Skip to Main Content
International Institute for Nanotechnology
Kabiller Prize • News • Events • Employment
  • About
    • Message from the Director
    • Partners
      • Centers & Institutes
      • Research Initiatives
      • Laboratories
      • Government Agencies
      • Academic
      • Industrial
    • Facilities
  • People
    • Executive Council
    • Steering Committee
    • Affiliated Faculty
      • Weinberg College of Arts & Sciences
      • Kellogg School of Management
      • Feinberg School of Medicine
      • McCormick School of Engineering & Applied Science
    • Administration
  • Research
    • NanoMedicine
      • Northwestern University Center of Cancer Nanotechnology Excellence (CCNE)
        • NU-CCNE Project 1
        • NU-CCNE Project 2
        • NU-CCNE Project 3
        • NU-CCNE Oligonucleotide Synthesis and Nanoconstructs Core
      • NTU-Northwestern Institute for Nanomedicine (NNIN)
        • NNIN Executive Committee
    • NanoOncology
      • Ronald and JoAnne Willens Center for Nano Oncology
        • Willens Center Project 1
        • Willens Center Project 2
        • Willens Center Project 3
        • Willens Center Project 4
        • Willens Center Project 5
    • NanoEnvironment
      • Nanotechnology for Universal Clean Air & Water Security (NU-CAWS)
        • NU-CAWS Affiliated Faculty
        • NU-CAWS Research Highlights
    • NanoEnergy
    • NanoMaterials
      • Center of Excellence for Advanced Bioprogrammable Nanomaterials (C-ABN)
        • Thrust 1 - Materials & Methods Development
        • Thrust 2 - Functional Substrates
        • Thrust 3 - Advanced Biosensing
    • Molecular Electronics
    • Security & Defense
  • Education
    • Ryan Graduate Fellowships
    • IIN Postdoctoral Fellowships
    • Frontiers in Nanotechnology Seminar Series
    • Research Experience for Undergraduates (REU)
    • All Scout Nano Day
    • Nano Boot Camp for Clinicians
    • Nanotechnology Town Hall Meetings
  • Industry
    • Nanotechnology Corporate Partners (NCP) Program
    • Small Business Partnership
  • Giving
  • Kabiller Prize
    • Overview
    • Kabiller Prize Nomination Process
    • About David Kabiller
    • Kabiller Prize Winners
      • 2019 Chad Mirkin
      • 2017 Robert Langer
      • 2015 Joe DeSimone
    • Kabiller Young Investigator Award Winners
      • 2019 Molly Stevens
      • 2017 Liangfang Zhang
      • 2015 Warren Chan
  • News
  • Events
    • 2020 IIN Virtual Symposium
    • Frontiers in Nanotechnology Seminar Series
    • Nano Boot Camp for Clinicians
    • Nanotechnology Town Hall Meetings
  • Employment
    • Assistant, Associate or Full Professor of Nanotechnology
close
‹ back to news & updates

Peptide therapies delivered via nanostructures could disable coronavirus’ spike proteins

Posted by Mark Heiden, Posted in News, Research
Share:

Suvendu Biswas and Mark Karver in SQI’s Peptide Synthesis Core Facility

by Amanda Morris

  • Press Kit

Researchers are developing new peptide-based therapeutics for targeting and disabling the coronavirus’ so-called “spike proteins.”

Spike proteins — the crown of bulbous projections that give the coronavirus its signature halo effect — attach to and infect healthy cells, causing COVID-19. Led by Northwestern University and Massachusetts Institute of Technology (MIT), the research team is engineering new therapies that could potentially disable the virus and prevent its infection of human cells

The idea is based on a recent discovery from the laboratory of Bradley L. Pentelute, an associate professor of chemistry at MIT. Pentelute’s team discovered a peptide molecule that specifically and strongly binds to the coronavirus’ spike protein.

However, peptide drugs — which could revolutionize treatments for many diseases — are notoriously challenging because enzymes in our bodies rapidly degrade them, so they lose efficacy. This is precisely where investigators at Northwestern’s Simpson Querrey Institute (SQI) can help.

“I read about Professor Pentelute’s peptide in an MIT news item two weeks ago and reached out to him the same evening,” said Northwestern’s Samuel I. Stupp, who leads the Northwestern effort. “A few days later, a package arrived at SQI with a large enough quantity of the binding peptide to initiate the joint project.”

Stupp is the Board of Trustees Professor of Materials Science and Engineering, Chemistry, Medicine and Biomedical Engineering at Northwestern and director of SQI. He has appointments in Northwestern’s McCormick School of Engineering, Feinberg School of Medicine and Weinberg College of Arts and Sciences.

Researchers in Stupp’s laboratory and SQI’s Peptide Synthesis Core Facility directed by Northwestern’s Mark Karver have been working over the past two years on a platform to deliver peptide drugs. Stupp, an expert on self-assembly of peptides, initiated this project with chemistry graduate student Ruomeng Qiu, which involves “gluing” millions of peptides into a nanostructure that becomes the carrier of the precious drugs. The similar chemistry of the drug and the carrier allows the scientists to design nanostructures that protect the peptide drug while it circulates in the body before it encounters the culprit of the disease, the novel coronavirus.

SQI’s peptide nanostructures have already been proven to be highly effective in regenerative medicine, and the Institute is working hard to get the technology to clinical trials. The efficacy of the SQI carriers in some regenerative medicine targets is also based on the protection of fragile proteins needed to signal cells, and this same phenomenon could be instrumental in the development of antiviral vaccines. The Pentelute lab at MIT, on the other hand, specializes in the rapid synthesis of peptides, which is extremely important for the clinical translation of all peptide-based therapies.

The SQI carrier nanostructures have water-filled channels, which could hold the antiviral therapies and protect them from destructive enzymes. The SQI team has been investigating the concept using a potential Alzheimer’s disease drug and the general approach has been found to be highly effective in in vitro experiments.

Now Stupp, Karver, Qiu and SQI assistant core scientist Suvendu Biswas have quickly turned their attention to COVID-19 by working with the MIT team and possibly their collaborators at the Icahn School of Medicine at Mount Sinai in New York, who could test the constructs in human cells and animal models.

“It has been great to see how graduate students and postdocs are volunteering to contribute physically or virtually to the rapid progress of the project,” Stupp said. “We are very excited about this joint effort with the MIT team given the importance of peptides and peptide nanostructures in the development of new therapies and vaccines.”

No Comments


No comments yet.

Leave a Reply Cancel reply

* Get an image next to your comment by visiting Gravatar.com and uploading a profile photo that links to your email address.

    Categories

    • Awards and Honors
    • Multimedia
    • Nanoscape Newsletter
    • Nanotechnology at Northwestern
    • News
    • Research
    My Tweets

    For Journalists

    NORTHWESTERN MEDIA CONTACT

    Megan Fellman
    Science and Engineering Editor
    Phone: 847-491-3115
    Email: Megan Fellman

    IIN MEDIA CONTACT

    Kathleen Cook
    Chief of Staff
    Phone: 847-467-5335
    Email: Kathleen Cook

Signup For Our Newsletter

Sign up for our newsletter to receive information on events, news, and articles.

More Info
  • Privacy Policy
  • Tech Transfer
  • News & Events
  • Contact Us
  • Sitemap
  • Education
  • About Us
  • Nano101
  • Facilities
  • Partners
Follow Us
  • Facebook
  • Twitter
  • LinkedIn
  • Youtube
  • Instagram

Northwestern University

© International Institute for Nanotechnology