Reaction of the Day: Polyethylene

- Polyethylene is the most commonly used plastic in the world and can be made to have diverse properties.
- Over 90 million metric tons of polyethylene are produced globally each year.
- Polyethylene is used in power transmission, food packaging, consumer goods, electronics, and household goods.
- Polyethylene doesn't biodegrade but does undergo photodegradation – light causes polyethylene chains to break, and so the pieces of plastic get smaller over time.
- Plastics like polyethylene have even been found 36,000 feet deep in the Mariana Trench.

Today's Overview

- Polymers
 - Addition Polymerization vs. Condensation Polymerization
 - Cross-Linking
 - Elastomers, Thermoplastics, Thermosets
- What do these have in common?

What are Polymers?

- Polymer: Chain-like molecule composed of many (poly-) repeating structural units called monomers (-mers).
 - Monomers can be any building block that connects together.

- Natural Polymers:
 - Rubber, leather, wool, DNA, proteins
- Synthetic Polymers:
 - Polyethylene, polypropylene, polyester, nylon, polyvinylchloride

Structure of a Polymer (Kevlar)

Addition Polymerization (Chain-Reaction Polymerization)

- Double bonds open up to form "radical" unpaired electrons at the end of each chain.
 - Formation of a bond is more stable than unpaired electrons, therefore these continue to build in a chain-reaction.

Common Addition Polymers

TABLE 27.5 Some Polymers Produced by Chain-Reaction Polymerization

Name	Monomer	Polymer	Uses
Polyethylene	CH ₂ =CH ₂	$-(CH_2-CH_2)_n$	Bags, bottles, tubing, packaging film
Polypropylene	CH ₂ =CHCH ₃	$\begin{pmatrix} CH_2 - CH \\ \\ CH_3 \end{pmatrix}_n$	Laboratory and household ware, artificial turf, surgical casts, toys
Poly(vinyl chloride) PVC	CH ₂ =CHCI	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	Bottles, floor tile, food wrap, piping, hoses
Poly(tetrafluoroethylene), Teflon	$CF_2 = CF_2$	$-(CF_2-CF_2)_n$	Bearings, insulation, nonstick surfaces, gaskets, industrial ware
Polystyrene	CH2=CH	$CH_2 - CH \rightarrow$	Packaging, refrigerator doors, cups, ice buckets, and coolers (as foam)

Condensation Polymerization (Step-Reaction Polymerization)

 Two molecules join together and often eliminate a small molecule such as H₂O.

Common Condensation Polymers

TABLE 27.6 Some Polymers Produced by Step-Reaction Polymerization

Name	Monomer	Polymer	Uses
Poly(ethylene glycol terephthalate) (Dacron)	HOCH ₂ CH ₂ OH and	$\begin{bmatrix} 0 & 0 \\ C & -C \\ $	Textile fabrics, twine and rope, fire hoses, plastic containers
Poly(hexamethyl- eneadipamide) nylon 66	H ₂ N(CH ₂) ₆ NH ₂ and HOOC(CH ₂) ₄ COOH	$\begin{bmatrix} \mathbf{O} & \mathbf{O} \\ \parallel & \parallel \\ \mathbf{C} - (\mathbf{CH}_2)_4 - \mathbf{C} - \mathbf{NH} - (\mathbf{CH}_2)_6 - \mathbf{NH} \end{bmatrix}_n$	Hosiery, rope, tire cord, parachutes, artificial blood vessels
Polyurethane	HO(CH ₂) ₄ OH and OCN(CH ₂) ₆ NCO	$ \begin{bmatrix} O - (CH_2)_4 O - C - N - (CH_2)_6 N - C \\ 0 & 0 \end{bmatrix}_n $	Spandex fibers, bristles for brushes, cushions and mattresses (as foam)

Cross-Linking Connects Polymer Chains via Covalent Bond Formation or IMFs

- Covalent bond formation lends properties to polymer chains that are not seen in the chains alone.
 - Example: Isoprene into rubber via vulcanization.
- Intermolecular forces (hydrogen bonding, dipole interactions, and dispersion forces)
 - Example: Nylon 6,6; Kevlar
- Polymer types, based on these properties:
 - Thermoplastic
 - Thermoset
 - Elastomer

Thermoplastic Polymers Exhibit Temperature-Dependent Properties

- Above critical temperature, become fluid, or "glassy".
- When cooled below critical temperature will retain shape of previous container.
 - Reusable; Can be molded into new forms.
 - Example: Polyethylene bags

Thermoset Polymers Exhibit Irreversible Cross-Linking with Heat

- Above critical temperature, polymer undergoes irreversible cross-linking reaction.
- Upon cooling, polymer retains final form.

Cross-Linking in Elastomers Allows Reversible Stretching

- Polymer reorganizes upon application of stress to redistribute force.
 - Weak IMFs broken and re-formed to keep polymer chains associated with each other.
 - Will return to previous shape if previously "cured" or covalently cross-linked (*e.g.*, rubber).
 - Can be thermosets or thermoplastics.

Cross-Linking via Intermolecular Forces (IMFs)

- Depending on the monomer identity, chains may exhibit hydrogen-bonding or dipole-dipole interactions.
 - As the polymer size increases, dispersion forces will also become important.
- IMFs can be used to cross-link chains; however, these can be broken more easily than cross-linking via covalent bond formation.

Cross-Linking of Kevlar[™] Molecules via Intermolecular Forces

- Kevlar fibers, connected via intermolecular forces, are woven into fabrics for bullet proof vests.
- These connections break, slowing the bullet, as it passes through.

DNA: A Polynucleotide

- Repeating unit in DNA is a nucleotide.
 - Charged phosphate group attached to deoxyribose sugar.
 - Nitrogenous base can be one of four components:
 Adenine, Cytosine, Guanine, or Thymine.

Building Single-Stranded DNA: A High Information Content Polymer

- Nucleotides are our building blocks.
- Two components can be controlled:
 - 1. Length: The number of nucleotides.
 - 2. Base: The identity of the nucleotides.

Combining Single Strands

- Specific combinations of nucleotides will "recognize" each other and connect via hydrogen bonding.
 - We call this process hybridization.
 - Adenine will connect to thymine via 2 H-bonds.
 - Guanine will connect to cytosine via 3 H-bonds.
 - Non-covalent connection (H-bond) means these can be broken and formed dynamically like in water.

DNA Structure

- DNA duplexes form a double-helix structure
 - Nitrogenous bases are along the center and the charged phosphates are along the outside.
 - Bases are stabilized in the center by π - π stacking: delocalized π orbitals overlap by stacking (similar to graphite).

Dehybridization Requires IMFs to be Broken Between DNA Strands

- The more bases that are complementary between single strands (and the more G-C content), the more intermolecular forces.
- To separate these strands requires energy to break IMFs.
 - Energy can come from the surroundings as temperature.

Q: Which of these DNA strands will have the greatest binding strength?

- 1. 3' AAGG 5' and 5' TTCC 3'
- 2. 3' AAGG 5' and 5' AAGG 3'
- 3. 3' GGCCGG 5' and 5' CCGGCC 3'
- 4. 3' TTACTA 5' and 5' AATGTT 3'

Uses of Synthetic DNA (To Be Discussed Next Lecture)

 Making designer materials – DNA Nanotechnology. Repurposing the blueprint of life for materials chemistry

 Probes in biodetection -- measuring the presence or absence of a natural RNA or DNA sequence associated with a viral, bacterial, or genetic disease.

 Genetic medicines – specific sequences can intercept cellular machinery like RNA to stop the production of disease-causing proteins.

Science, **1997**, 277, 1078; *J. Am. Chem. Soc.* **2003**, 125, 6, 1643; *Nature Rev. Mater.* **2018**, *3*, 17068. Chad A. Mirkin

